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Mean value and uncertainty of optical phase-a simple 
mechanical analogy 

TodS Opatrngt 
Department of Theoretical Physics, Palace University, Svobcdy 26,771 46 Olomouc. Czech 
Republic 

Received 21 June 1994, in final form 7 September 1994 

Abstract. There exist several dehnitions of the mean value and the phase uncertainty of an 
optical field. We show that one of these definitions is especially simple and intuitive because of 
its mechanical analogy, 00 this basis, we also derive the summation rule and the Tchebyshev 
inequality for random angular and phase variables and a number-phase uncertainty relation. 

1. Introduction 

In quantum optics, there has been much discussion about the measurement of the phase of 
an optical-field. Along with the problem of how to define an operator of this quantity, it is 
not clear how to define its mean value and spread (uncertainty). If we are able to construct 
some phase distribution p(p). where p(p + 2n) = p(p) and J,” p ( q )  d p  = 1, then there 
are several ways of defining these characteristics of p. Similarly, as for a real-axis random 
variable, we could be tempted to take a mean value defined as 

as the uncertainty. However, this definition is dependent on the chosen phase interval: if 
we change the origin of the phase window b ,  the mean value and variance change. Some 
authors use realizations of phase uncertainty by choosing an interval for which the variance 
has a minimum (e.g. [l]; measurements of the quantity Da see, e.g., [2]).  

The aim of this paper is to show that the definition of the preferred phase [l] 

and that of the dispersion (first introduced into quantum optics in [3], studied in the classical 
theory of statistics in [4] and discussed, for example, in [ 1,5-71) 

(4) uv 2 = 1 - (cosp)’- (sinp)’ 
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have a simple mechanical analogy, which provides a deeper insight into the phase 
distribution. Moreover, we propose a new measure of the phase uncertainty A p  = sin-’ U? 

with an interpretation close to the ordinary standard deviation [8].  
To distinguish the ordinary mean value and uncertainty from their angular and phase 

counterparts, in this paper we use the symbols (p) and D to denote the usual phase mean 
and variance, respectively (equations ( I )  and (2); the origin of the phase window p is chosen 
so that Dg is minimized), whereas c j  and U,” denote the preferred phase and the dispersion 
(equations (3) and (4), respectively). The symbol Aop is used for the usual definition of 
the phase standard deviation Aofp = a, while Acp is used for the proposed measure of 
uncertainty. 

This paper is organized as follows. In section 2, we study the analogy between the 
mechanical and probabilistic variables to gain better insight into the problem. In sections 3 
and 4, we modify some results of the probability theory for the case of angular variables, 
concerning the summation of random variables (section 3) and the Tchebyshev inequality 
(section 4). Finally, in section 5, we apply the new results to the optical phase and give 
some simple examples. 

2. Probability-mass analogy 

It is useful to note that the mechanical analogy of the mean value is the centre of mass. 
Let us consider, for simplicity, a two-dimensional body with unit mass, its density being 
described by the function p ( x ,  y). The coordinates of its centre of mass C are given 
by x, = l x p ( x ,  y) dx dy, yc = l yp(x ,  y) dx dy. This is formdly the same expression 
as those for the mean values of random variables x and y. In contrast, the quantity 
I = l S ’ ( . x ,  y ) p ( x , y ) d r d y ,  where S ( x .  y) is the distance of the varying point from the 
centre of mass, is just the moment of inertia (with respect ta the centre of mass and the 
axis perpendicular to the plane xy), which is a simple analogy of TrAA,  where 

This covariance mahix corresponds to the inertia tensor. 
We can use this analogy to interpret the preferred angle and the dispersion of angle. 

In our analogy, we will suppose that the angle distribution corresponds to the density of a 
ring. Let us consider a ring with unit radius and unit mass, its density being described by 
a function of angle ~ ( ( 0 ) .  The centre of mass can be described by the polar coordinates R 
and @, which are given implicitly by 

2n 
R s i n p  = 1 sinpp(cp)dp. (7) 

Note that the explicit definition of @ coincides with equation (3). 

the axis perpendicular to the plane of the ring). We write 
Now we can compute the moment of inertia with respect to the centre of mass (along 
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where the 6(p) is the Euclidean distance between the centre of mass and the point of the 
ring with angular coordinate p, i.e. (using the cosine theorem) 

(9) S2(cp) = 1 + RZ - 2Rcos(cp - 6). 
Computing the integral (equation (S)), we find that 

I = 1 - RZ. 

We can easily verify that this quantity is equivalent to the phase dispersion defined by 
equation (4). 

This result may be used for defining the uncertainty of 'P (see figure 1). Let us consider 
the quantity U = Z"': for a unit-mass body with a centre of mass C, it is a length with the 
following meaning: if we place two half-mass points in the plane of the body at a distance 
U from the point C, so that C is in the middle between them, we get a body with the 
same centre of mass C and the same moment of inertia I. Locating these two points on 
the unit circle, the angular distance between them may be used as a measure of the angular 
uncertainty. We can write the angular coordinates of these points 

' ~ 1 . 2  = 6 * A'P (11) 

A y  = cos-'(R). (12) 

where 

Figure 1. Two half-mass points located at (PI and (4 on the unit circle have the centre of mass 
with polm mordinates R and d ,  thus defining the preferred angle r j  and the angular uncenainty 
AV through the probability-mass analogy. 

If we replace p(q)  by p(p) in equations (6)-(8) and interpret it as the distribution of 
the angle p, the preferred angle 6 can be treated as a uniquely defined mean value of the 
angle and then the quantity AV can measure the angular uncertainty: equation (12) provides 
the values in the interval [O; ir/2]. Let us note that in the case of R = 0, 6 is undefined. 
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3. Summation of random angle variables 

In the Euclidean space theory of probability, the expectation (mean) and the variance 
of a sum of independent random variables have simple expressions. Let X and Y be 
two independent random Euclidean variables, Then, 'the expectation of their sum is 
E(X  + Y )  = E ( X )  + E ( Y )  and the variance of their sum is D(X + Y )  = D ( X )  + D(Y).  
We can modify these rules for the random angular variables. 

Writing (6) and (7) in a simpler form 

R ~ V  = 1% ei'p((o)drp (13) 

we will assume that (o = x +I9. Here x and 0 are independent angular variables with phase 
distributions p,((o) and p ~ ( ( o ) ,  respectively, for which we can write R, exp(i2) = (exp(ix)) 
and Reexp(it9) = (exp(i0)). Then we can write 

from which we conclude that 

R = R,Re (15) 
and 

@ f + 8 mod2z. (16) 

For the preferred values, the summation rule is very similar to that of Euclidean expectation, 
whereas, for the dispersions, the situation is different from the variances. We can write 

u 2 = 1 - ~ z = 1 - ~ 2 ~ 2 =  ,@ x e g x  2 +a,-g,oe. 2 2 2 (17) 

This summation rule for the dispersions differs from that for the variances of Euclidean 
variables by the term -cr;ui; however, we can see that they give similar results for U;, 

Let us mention an interesting example of the summation of angular variables. We can 
consider a sum q5 = E,"=, (91 of N independent random angular variables (ok ,  each with the 
dispersion u:/N. In the limit of N tending to infinity, the radial value R+ of the sum tends 
to the value 

a; << 1. 

and the dispersion tends to 

0 2  m = 1 - R2 m = 1 -e-d, (19) 
Again, this result differs from that of the Euclidean variables, where a: would be equal 
to a:, but the results approach each other when U: << 1. We can also make a conclusion 
about the distribution of the summed angle q5. If the summed variables were Euclidean, we 
would get the normal distribution with variance a:? according to the central-limit theorem. 
Due to the periodicity of the angular distribution, we arrive at the so-called wrapped normal 
distribution [4] 

As may be checked, the dispersion of this distribution agrees with equation (19). 
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4. Tchebyshev inequality 

The Tchebyshev inequality is a very important theorem of probability theory. It can generally 
be written in the form 

where E is an arbitrary positive real number, X is a random variable with mean % and 
variance U; and P denotes the probability of the event in the parentheses. 

A similar inequality can also be derived for the case of angular diskibution. The 
derivation is essentially the same as the derivation of the usual form of the Tchebyshev 
inequality [9 ] .  Let us write the dispersion, as in (8) and (9), with changed integration limits 

Let E be a real number between zero and n; the integral (22) can then be written as a sum 
of three integrals 

U,’ = [i:T+i”+lr](1 +RZ-2Rcos(rp--))p(rp)drp. (23) 

Since the integrand is always non-negative, the right-hand side will not increase if the 
middle integral is dropped. Then, because, in both remaining intervals, cos(rp - @) < cos E, 

we may write 

= ( I  +RZ-2Rcos&)P(lrp-~rpl)&) (24) 

assuming that /rp - @I < n. Thus, we can write 

or, introducing AV, 

for any E E (0, n). This is the Tchebyshev inequality for the angular distribution: it shows 
the relationship between the notion of angular uncertainty Arp and the probability of an 
angle falling outside some interval centred at @, 

It can easily be shown that, in the case of Arp << 1 and E << 1, the right-hand side 
of the last inequality approaches (Arpp)2/~2, according to the usual form of the Tchebyshev 
inequality. 

It is also worth noting that the only case for which the inequality becomes an equality 
is when the angular distribution has the form of two equal delta peaks, located at @ + Ap 
and @ - Ap, and when E = Ap. 
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5.  Optical phase 

Up to now the analogy between probability and mass has been exploited. To recognize the 
analogy between angle and phase, let us remember that the phase space of a particle moving 
in a plane has four components x ,  y, pr and p y .  From the adopted static point of view, the 
angle is determined by the coordinates x and y .  In contrast, the phase space of an optical 
mode is similar to that of a one-dimensional harmonic oscillator with its two coordinates 
x and p x .  Thus, the phase is a dynamical concept, which is defined in terms of x and p x ,  
The analysis of the preferred angle and the angular dispersion applies also to the preferred 
phase and the phase dispersion because of the formal replacement of x and y by x and px 
according to the standard correspondence [IO] 

x -+ Ex + R e a  

where o is the frequency of the harmonic oscillator and m is the mass of the particle. 
Finally, a is the complex amplitude of the optical mode. 

For comparison, we calculate the phase uncertainty using both the usual definition and 
the proposed method for two simple cases. 

5.1. Uniformly distributed phase 

Suppose that the phasedistribution has the form p('p) = (I/N)CZ=, J( 'p-Znk/N);  it may 
correspond, for example, to any number state in the Pegg-Barnett model [ I  I], where N is 
the dimension of the Hilbert space. The usual definition of the uncertainty (equation (2)) 
gives the N-dependent value 

which, in the limit of infinite N (and for the case p(p) = l/(27r)), gives the well known 
value [I,  5 )  Aop = a/&. The proposed method for measuring the phase uncertainty gives 
the same result for every N 2: Au, = ~ / 2 ,  It can easily be understood by using our 
analogy if we realize that, for this phase distribution, the centre of mass coincides with the 
centre of the ring (R = 0); the moment of inertia would then be reproduced by a phase 
distribution of two delta peaks located at rtn/2 from the arbitrary initial direction. 

5.2. Superposition of two phase stares 

Let the phase distribution have the form 

P('p) = P16('p - 0 )  + P26((0 - (0 + v)) (30) 

where 0 < y < z. This could correspond to a superposition of two phase states with 
angular distance y .  The usual phase uncertainty is then Aop = m y ,  whereas the 
proposed measure gives 
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It can easily be checked that the two results coincide for the case when PI = p~ = 4; the 
results also approach each other when y << 1. 

Finally, it is interesting to find uncertainty relations between AV and the photon-number 
uncertainty An. These relations are easily obtainable in the Sussldnd-Glogower model by 
adding the relations [12] 

( A ~ ) * ( A  COS (D)’ > (sin (~)‘/4 

(An)’(A sinq)’ 2 (cos0))~/4. 

Considering the definition of U+, (4), we obtain a relation between the phase dispersion and 
the photon-number uncertainty (cf [13,14,1]) 

(An)’(ui - Po/2) < (1 - u,2)/4. (33) 

Here we have used the fact that, in this model, (c~s’(D + sin (D) = 1 - P0j2, where PO is the 
vacuum-state probability. Inserting the definition of the phase uncertainty AV = sin-’ uq 
into this relation, we anive at 

- 2  

(34) 

From this relation we can get a weaker but state-independent relation, the square root of 
which takes a very simple form 

AntanAp > f. (35) 

Note that for small AV this relation approaches the relation 

AnAV 2 f (36) 

the first historical attempt of the number-phase uncertainty relation. On the other hand, 
when the number uncertainty is very small, the phase uncertainty approaches the value n/2 
and not infinity as required by relation (36). 

In this paper, we have seen that the proposed measure of the phase spread (uncertainty) 
A(D has a simple and clear physical meaning. The main advantages of this measure are that: 
(i) it does not depend on the chosen phase window (as does the standard deviation Aop); 
(ii) it is possible to find interesting uncertainty relations for this measure; and (iii) it has a 
physical meaning of angle-in contrast, for example, to the square root of dispersion uq. 
As has been shown, the properties of the measures AV, AO(D and uq are approximately the 
same for very small AV. 
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